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ABSTRACT 

Mechanical characterization of orthotropic 
materials is a complicated reverse engineering 
problem. Researchers developed many different 
methods based on theoretical/numerical 
formulations or on experimental techniques. In 
the last few years, integrated techniques that 
determine elastic constants by comparing 
experimental results with numerical data have 
been developed.  

The present work discusses a novel hybrid 
procedure - denoted as ESPI-SA - that includes an 
optical technique (Electronic Speckle Pattern 
Interferometry, ESPI) and a numerical 
optimization technique (Simulated Annealing, 
SA). ESPI-SA minimizes the difference between 
the displacement field found experimentally and 
the displacement field computed numerically 
(with FEM) by means of an optimization 
algorithm which finally finds the values of the 
elastic constants. 

In order to check on the feasibility of ESPI-
SA, in-plane elastic properties of an orthotropic 
laminate (8-ply woven fiberglass-epoxy) used as 
substrate for printed circuit boards have been 
determined. Specimens were tested in three-point-
bending.  

Results indicate that ESPI-SA determined 
accurately the elastic constants of the orthotropic 
material under investigation. In fact, the residual 
error between the displacements measured by 
ESPI and those computed at the end of the 
simulated annealing identification process was 
less than 3%. Remarkably, the performance of the 
ESPI-SA identification procedure was insensitive 
to the location of the region in which 
experimental and numerical data are compared. 

 

INTRODUCTION 
Experimental identification of mechanical 

properties of orthotropic materials is a 
complicated reverse engineering problem 
entailing several tests each of which requires ad 
hoc setups. Moreover, each test specifically 
designed for determining a given elastic constant 
should be run always serially in order to reliably 
determine the value of that elastic constant on a 
statistical basis. Finally, because of anisotropy, 
non-homogeneity and internal defects of the 
material, different testing procedures may even 
result in significantly different values of the same 
elastic constant.  

On the other hand, theoretical/analytical 
models and numerical techniques are certainly 
much cheaper than experimental techniques in 
terms of required equipment but they are often 
based on highly idealized conditions that may be 
openly in contrast with the real behavior of the 
material. Moreover, analytical formulations can 
usually model only a limited set of loading and/or 
boundary conditions. 

From the previous discussion, it appears that 
an efficient material characterization procedure 
should determine all the elastic constants by 
performing a very limited number of experimental 
tests. Hybrid techniques that minimize the 
difference between experimental and numerical 
data by means of optimization algorithms where 
elastic constants are included as design variables 
certainly satisfy such a requirement and are 
actually getting more and more common in 
practical engineering [1-3]. As is clear, a suitable 
hybrid technique will require: (i) a simple 
experimental set-up which allows accurate and 
non-invasive full field measurements; (ii) a robust 
and reliable optimization procedure able to 
converge to the target values of elastic properties 
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regardless of load type, initial guess on elastic 
constants, boundary conditions, etc.  

In view of this, the paper discusses the 
feasibility of a novel hybrid procedure for 
characterization of composite materials where 
Phase Shifting Electronic Speckle Pattern 
Interferometry (PS-ESPI) and Simulated 
Annealing (SA) are combined together in order to 
minimize the difference between the displacement 
field gathered experimentally and its counterpart 
obtained with finite element analysis. The new 
procedure is indicated as ESPI-SA - the acronym 
stands for Electronic Speckle Pattern 
Interferometry Simulated Annealing - in the rest 
of the paper. 
Electronic Speckle Pattern Interferometry (ESPI) 
[4] is a powerful full-field optical technique based 
on the fact that two beams originated from a 
coherent light source (i.e., laser) produce an 
interferometric pattern from which we can 
recover either correlation fringes and/or phase 
distribution. Correlation fringes and/or phase 
distribution are utilized to compute displacements 
which are proportional to correlation fringe order 
or to phase difference between loaded and 
reference (i.e., unloaded) state. As is known, 
phase-stepping [5] strategies in speckle 
interferometry (PS-ESPI) are very useful since 
they allow us to recover directly the phase value 
yielding at each point of the specimen surface. 
Simulated Annealing (SA) [6]  is a combinatorial 
optimization technique where the design variables 
are perturbed in a random fashion in order to 
check whether the cost function improves or has a 
high probability of improving in the next few 
evaluations. SA is able to find the global optimum 
with a high probability even for ill-conditioned 
functions with numerous local minima. In 
addition, SA does not require gradient 
information because it does not build approximate 
models. Therefore, it appears that Simulated 
Annealing is very suitable for composite material 
characterization since the identification of elastic 
constants is certainly a non-smooth problem but 
with relatively “weak” explicit constraints (i.e., 
those ensuring positive definiteness of the 
stiffness matrix). 

In ESPI-SA, the difference between numerical 
and experimental results is expressed in fashion 
of an error function ψ depending on the material 
elastic constants to be determined. The ψ function 
is then minimized by means of the SA based 
optimizer which finally provides the values of the 
elastic constants.  

Although other material identification techniques 

[7]  process strain values, it should be noticed that 
strain determination involves numerical 
differentiation of the displacement field obtained 
experimentally. However, since the displacement 
field measured by optical methods will be locally 
smoothed over a set of pixels close to the location 
where the value of strain is to be computed, 
strains might not be correctly estimated. In such a 
case, the entire identification procedure could fail 
(see discussion in Ref. 7 for more details).  
In addition, strain based material identification 
procedures lead to write energy balance equations 
which may require the knowledge of several 
strain components (for instance, in a 2-D case we 
need to know εx and εy under the very limited 
hypothesis that the cross derivatives ∂u/∂y and 
∂v/∂x of the x, y displacements do not play any 
role in the structural response). Determination of 
in-plane strain components with experimental set-
ups based on the Michelson’s interferometer 
principle is a rather well established practice. 
Hung and Wang [8] built in the middle 1990s a 
dual beam shearometer for measurement of in-
plane strains thus overcoming the limitation of 
classical shearography which allowed analysts to 
measure only derivatives of out-of-plane 
displacements. However, shearographic 
evaluation of each strain component implies 
changing the illumination direction. This may be 
openly in contrast to the requirements on 
simplicity, repeatability and accuracy of the 
experimental part included in a hybrid procedure 
for material identification. 

The feasibility of the ESPI-SA procedure has 
been tested here in the identification of an 8-ply 
woven reinforced fiberglass-epoxy laminate 
utilized as substrate for printed circuit boards. 
Specimens under 3-point-bending have been 
considered in the experimental tests in order to 
minimize rigid body motions and thus to prevent 
speckle pattern de-correlation. The results 
obtained indicate that ESPI-SA proved itself 
capable to characterize very well the in-plane 
behavior of the laminate. In fact, the residual error 
on computed displacements was less than 3%. 

 
 
THE ESPI-SA PROCEDURE 

Figure 1 shows the flow chart of the ESPI-
SA procedure discussed in this paper. The 
different steps of the procedure are explained in 
the following.  
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Experimental determination of the displacement 
field by means of PS-ESPI 

Phase Shifting Electronic Speckle Pattern 
Interferometry (PS-ESPI) is based on the fact that 
two beams originated from a coherent light source 
(laser) produce an interferometric pattern when 
they hit on a surface. N different interferometric 
patterns are taken at two different exposures: the 
reference (i.e., unloaded) and the loaded one. 
From each set of N acquisition, it is possible to 
get the distribution of phase Φ(x,y) at each point 
of the surface. Finally, displacements are easily 
computed as they are proportional to the ∆Φ(x,y) 
phase difference between the two different 
exposures. 

Figure 2 shows the experimental set-up based 
on the Leendertz’s interferometer [9] for 
measurement of in-plane displacements. A 35 
mW He-Ne laser (λ=632.8 nm) provides the 
coherent light source. A closed loop controlled 
piezoelectric transducer (PZT) is used as phase 
shifter. The intensity distributions of the 
combined light beams are recorded by a B/W 
CCD camera (795 x 596 sensor). The images are 
then digitized by means of an 8-bit frame grabber. 
It can be seen  from the figure that the laser beam 
is expanded first, filtered then and collimated 
finally. In order to preserve coherence, the double 
illumination is obtained by reflecting a certain 
fraction of the laser beam onto a mirror (mounted 
on the PZT device) which is orthogonal to the 
surface of the specimen. The illumination angle θ  
made by the laser beams with the direction of 
observation is 20°. In addition, the aperture of the 
camera diaphragm is adjusted so to have the best 
level of illumination and the proper ratio of 
speckle size to pixel size. Finally, the chosen 
magnification ratio ensures that the size of the 
CCD sensor area is about the same as the 
specimen region investigated. 

The displacement field of points on the 
specimen surface can be determined as follows. 
The modulated light intensity I(x,y) of a speckle 
pattern is a harmonic function of the pixel 
coordinates (x,y). In general, the I(x,y) function 
has the following analytical form (1): 

 
( )[ ]roor )y,x(cos)y,x()y,x(I)y,x(I α+Φ⋅γ+⋅= 1

 
where the r subscript indicates the generic rth  
acquisition; Io(x,y) is the average intensity of the 
light (i.e., a slowly varying background 
illumination); γo(x,y) is the fringe contrast; Φ(x,y) 
is the value of phase in correspondence of a 

generic pixel; αr is the phase-shift angle (between 
0 and π) introduced by the difference in optical 
path ∆OP generated by giving the ∆x movement to 
the PZT device.  
In order to get the value of the phase Φ(x,y) from 
Eq. (1), one has to determine the unknowns 
Io(x,y), γo(x,y) and Φ(x,y). Therefore, at least 
three acquisitions are needed. Four-phase 
technique where shifts are chosen as αr = 0°, 90°, 
180°, 270° is widely utilized. Hence, the phase 
value at the generic pixel (x,y) is: 
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where I1(x,y), I2(x,y), I3(x,y) and I4(x,y) are the 
light intensity values recorded in the four 
different acquisitions. 
For each pixel, the phase value is determined with 
Eq. (2) in correspondence of two different 
exposures: the reference configuration and the 
loaded configuration. The phase difference 
∆Φ(x,y) is hence computed for each pixel as:  
 
∆Φ (x,y) = Φ loaded (x,y)  −  Φ reference (x,y)   (3) 
 
Finally, the displacement ux in the plane defined 
by the two illuminating beams (see Figure 2) is: 
 

θsin

λ

4π

y)∆Φ(x,
y)(x,ux ⋅=  (4)

      
In-plane displacements were computed in this 
work by means of an image processing software 
coded in the Matlab [10] environment which 
included spatial filtering and phase unwrapping 
routines. 
 
Optimization problem 
 
Let j

xu  and  j
xu  denote the values of in-plane 

displacement in correspondence of the jth  node 
and pixel respectively determined by means of 
finite element analysis and by means of PS-ESPI. 
The barred notation indicates target displacement 
values since experimental measurements do not 
require to know the values of elastic constants a 
priori. Conversely, the values of elastic constants 
must be specified as input to FEM analysis in 
order to calculate displacements. In view of this, 
the determination of elastic constants becomes a 
non-linear optimization problem formulated as 
follows (5): 
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where the error function Ψ is to be minimized and 
the elastic constants Ex, Ey, Gxy and vxy are 
included as optimization variables (the “l” and 
“u” superscripts denote the lower and upper 
bounds of elastic constants, respectively). The 
two additional constrains in expression (5) ensure 
positive definiteness of the composite stiffness 
matrix [Q]. 
The variability range of elastic constants is 
chosen based on the type of material under 
investigation. Should this range be not known a 
priori, the identification process will be repeated 
serially so that each new optimization run starts 
from the minimum obtained in the previous 
iteration.  

Expression (5) shows that the error function 
Ψ is built by summing over the difference 
between the displacements measured by means of 
PS-ESPI and their counterpart calculated 
numerically. The difference may be computed at 
each pixel/node or for a smaller set of points 
included in the region of interest which is usually 
located where the speckle set-up ensures enough 
fringe contrast. Let Npix denote the total number 
of points (image pixels/FEM nodes) at which the 
experimental and numerical results are compared. 
In order to preserve the correspondence between 
the pixels of the recorded images and the nodes of 
the FEM model, the FEM model of the specimen 
is built by setting the element size as a multiple of 
the pixel size (the limit case obviously occurs 
when these two sizes are equal). 

Since Ψ is certainly a highly non-smooth 
function, gradient based optimization methods 
could not work well. In view of this, using 
Simulated Annealing (SA) in the material 
identification process is very logical.  
Simulated Annealing is a non-gradient 
optimization technique based on random 
evaluations of the objective function in such a 
way that transitions out of a local minimum are 
possible. The design variables are perturbed in a 
random fashion in order to check whether the cost 
function ψ improves or has a high probability of 
improving in the next few evaluations. Candidate 
designs are immediately accepted if they result in 
improvement in cost (∆Ψ<0). Conversely 
(∆Ψ>0), the SA algorithm accepts/rejects 
intermediate designs based on a probability 
function which depends on a parameter called 
“temperature”: as the temperature decreases, the 
probability of improving the cost further gets 
lower. It is apparent that SA is a global 
optimization algorithm because random 
generation of candidate designs allows us to 
explore larger fraction of design space than in 
approximate optimization where sensitivity 
analysis and search of candidate designs are 
performed only in the neighbourhood of the 
design point about which the problem is 
approximated. 

The pseudo code of the SA based optimizer is 
now provided (also see the flow chart shown in 
Figure 1). 
1. Start the optimization process. Store the 

elastic constants in the design vector X(x1, x2, 
x3, x4) where x1, x2, x3 and x4, respectively, 
are the Ex, Ey, Gxy and νxy constants. Set the 
K value for the  counter of cooling cycle as 1. 

2. Choose an initial design for which the value 
of the Ψ  function is very high. Store the 
initial design in the XOPT vector. Denote the 
corresponding value of the error function as 
ΨOPT. 

3. Set the initial temperature as To=1000 and 
choose the reduction factor β. In general, it is 
suggested 0.9 ≤ β ≤ 0.99. Here, we used an 
average value: β=0.95. 

4. Execute a cooling cycle. Perturb randomly 
each design variable xi (i=1,…,4) as follows 
(6): 
 

NRND<0 ⇒ xi = xOPT,i  + ( xOPT,i  − xi 
l ) NRND (TK / To) 

NRND>0 ⇒ xi = xOPT,i  + ( xi 
u
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where NRND is a random number chosen in 
the interval (–1, 1). The TK/To ratio is initially 
set equal  to 1 and is shrunk as the 
optimization progresses. 
 Perturb one design variable at a time and 
generate hence four new design vectors Xi. 

5. Evaluate the cost function at each one of the 
designs randomly generated in Step 4. Let Ψi 
denote the value of the error function in 
correspondence of the design Xi  generated 
by changing only the ith variable. Compare 
each Ψi to ΨOPT and compute ∆Ψi = Ψi − 
ΨOPT.  
- If it holds ∆Ψi<0, accept the design Xi as 
the new optimum XOPT. Set ΨOPT  =Ψ i.  
- If it holds ∆Ψi>0, generate a random 
number ρ in the interval (0,1). Based on the 
Metropolis criterion [6], accept a design Xi if 

it occurs P(∆Ψi)=e KTkB

i∆Ψ−
>ρ  (kB is the 

Boltzmann’s parameter) while reject the 
design Xi  if it occurs P(∆Ψi)<ρ. The 
rationale behind this criterion is that any 
perturbation of design which does not yield 
immediate improvement in cost function is 
however retained if the corresponding design 
point helps to bypass a local minimum 
increasing, thus, the probability of reaching 
the global optimum.  
Increase the number Nacc of accepted designs 
in a secondary cycle each time ∆Ψi<0 or 
P(∆Ψi)>ρ. 

6. Stop optimization process and go to Step 9 if 
it occurs Nacc=0. If it occurs Nacc>0 in the Kth 
cooling cycle, store ΨOPT  as ΨOPT, K.  

7. If K>3 check for convergence according to 
the following criterion: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

where WOPT,K denotes the best record found 
in the Kth cooling cycle. The εCONV  parameter 
is set to 10-5. If the convergence criterion is 
satisfied go to Step 9.  

8. If K<3 or the convergence criterion (7) is not 
satisfied: 
- reset the K counter as K=K+1, Nacc=0; 
- reduce temperature in fashion of  TK = β 

TK-1; 
- repeat from Step 4 onward.  

9. End the optimization process. 
 
 
RESULTS AND DISCUSSION 

The ESPI-SA procedure for mechanical 
characterization of orthotropic materials described 
in this work was tested on an 8-ply woven 
reinforced fiberglass-epoxy composite utilized as 
substrate for printed circuit boards. Standard 
mechanical tests previously carried out on the 
material provided the following elastic properties: 
Ex=25 GPa; Ey=22 GPa; Gxy=5 GPa; νxy=0.28. 

Figure 3 shows the composite laminate to be 
characterized. A 46 mm long, 13 mm tall and 1.2 
mm thick specimen was cut from a slice of 
material. The specimen, subjected to 3-point-
bending, was mounted on two supports spaced by 
30 mm. The 140 N vertical force which generated 
the load state was applied to the specimen by a 
rounded tip mounted on a sledge moved by a 
micrometric screw. Such a value of load 
preserved correlation of speckle patterns and 
ensured a rather high density of phase fringes. 
Indeed, the 3-point-bending load was chosen in 
this study because it minimizes rigid body 
motions (RBMs) of the specimen during the 
loading phase. This is very useful since RBMs 
may invalidate measurements carried out with PS-
ESPI as they cause speckle pattern de-correlation.  

The phase distribution obtained by means of 
PS-ESPI (with the Four-frame technique) is 
shown in Figure 4. It can be seen that the phase 
fringes reproduced the ux displacement field in 
fashion of a saw-tooth pattern. The loaded zone 
and the simply-supported zone are approximately 
indicated in the figure.  
Figure 4 also shows the FEM model used in the 
SA based optimization process along with the 
locations at which numerical and experimental 
data were compared. The commercial finite 
element code ANSYS® [11] was utilized to 
perform structural analyses in the identification 
procedure. The specimen was modeled with 
PLANE42 elements each of which included four 

     



































−

−

−

−

−

−−

−

−−

−

−−

−

2K,OPT

3K,OPT2K,OPT

1K,OPT

2K,OPT1K,OPT

1K,OPT

2K,OPT1K,OPT

K,OPT

1K,OPTK,OPT

W
|WW|

;
W

|WW|

;
W

|WW|

;
W

|WW|

Max         (7)



Inverse Problems, Design and Optimization Symposium 
Rio de Janeiro, Brazil, 2004 

nodes and two degrees of freedom per node. 
Since the specimen thickness is very small 
compared to the distance between supports, the 
plane-stress state is assumed in the specimen. 
Because of symmetry about the vertical axis and 
limitations in size of the optics used in the 
experiments, the region of interest considered 
along the x-direction was about 18 mm long. 

Since the ESPI set-up used in the experiments 
allowed to measure horizontal displacements (see 
Figure 2), the Ψ  error function was built by 
comparing the numerical (FEM) and experimental 
(PS-ESPI) values of ux displacements at the three 
locations indicated in Figure 4. The “5 mm” and 
“10 mm” locations are uniformly spaced with 
respect to the axis of symmetry of the specimen 
and the location of the simple-support while the 
“16.5 mm” station is very close to the support. 
The Ψ  error function was minimized in all those 
three cases. Finally, an additional optimization 
run (indicated as “ALL” in the rest of the paper) 
included all the nodes/pixels considered in the 
other three runs. 

Table 1 presents the results obtained for the 
material identification procedure. Different initial 
guesses on material properties were made in order 
to introduce more uncertainty in the optimization. 
It appears from the table that ESPI-SA was 
insensitive to the initial guess on elastic constants 
and to the location of the node sets chosen as 
basis of comparison in the material identification 
process. ESPI-SA was able to recover the very 
large initial percentage errors.  
Remarkably, the values of elastic constants 
determined by means of ESPI-SA were very close 
to the target values. Therefore, the ESPI-SA 
procedure achieved an acceptable final accuracy 
since the largest error on horizontal displacements 
was less than 3%. This residual error was 
certainly caused by uncertainty factors such as 
electronic noise mixed with interferometric 
patterns, overall efficiency of filtering process, 
local de-correlation of speckle patterns, etc. 
Figure 5 shows the percentage error on the ux 
displacement computed at each node/pixel of the 
different control stations (“5 mm”, “10 mm”, 
“16.5 mm”, “ALL”) when the values of elastic 
constants determined by the SA based optimizer 
were given as input to the FEM code. It can be 
seen that the maximum error occurred near the 
middle of the specimen height: that is, where the 
bending neutral axis is approximately located. 
This happened because the horizontal 
displacements are much smaller near the neutral 

axis than at the bottom and the top of the 
specimen and hence the optimizer is more 
sensitive to sudden changes in ux displacement 
sign which may result in local peaks of the Ψ 
error function. Such a behaviour was seen for all 
control stations. However, the simple-support  
located near the “16.5 mm” station resulted in 
increasing the standard deviation value of the 
error distribution.  

 
 

CONCLUSIONS 
This paper described a novel hybrid procedure 

for mechanical characterization of orthotropic 
materials. The procedure – named as ESPI-SA 
(Electronic Speckle Pattern Interferometry - 
Simulated Annealing) – combined a powerful 
optical technique (PS-ESPI) for full-field in-plane 
displacement measurements and a non-gradient 
optimizer (SA) particularly suitable for highly 
non-linear and non-smooth problems. The 
rationale behind ESPI-SA is to minimize the 
Ψ difference between the displacements 
computed by means of finite element analyses 
and their counterpart measured experimentally. 
Therefore, the Ψ difference was expressed here in 
fashion of an error function depending on the 
elastic constants of the material to be 
characterized. In summary, the reverse 
engineering problem of material characterization 
became an optimization problem where the goal 
is to minimize the Ψ function and the elastic 
constants are included as design variables. 

An 8-ply woven reinforced fiberglass-epoxy 
laminate used as substrate for printed circuit 
boards was characterized by means of the ESPI-
SA procedure described in this paper. A 46 mm 
long, 13 mm tall and 1.2 mm thick specimen was 
cut from a slice of material. The specimen was 
subjected to 3-point-bending in order to preserve 
correlation of speckle patterns. Horizontal 
displacements were measured with a set-up based 
on the Leendertz’s double illumination 
interferometer. Different sets of nodes were 
chosen at three locations in order to build the 
Ψ error function. An additional optimization run 
included all the nodes simultaneously. The 
Ψ difference was then minimized by means of the 
SA based optimizer.  

The results obtained in this study indicate that 
the ESPI-SA procedure was capable to accurately 
characterize the behavior of the 8-ply woven 
composite laminate. In fact, the residual error 
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between the displacements measured by means of 
PS-ESPI and those computed by means of finite 
element analysis at the end of the identification 
process was less than 3%. Most of this error was 
probably due to factors inherent to ESPI 
(electronic noise, filtering efficiency, etc.).  
However, even though the proposed approach to 
orthotropic material characterization proved itself 
to be feasible and the results presented in this 
paper were encouraging, the present authors point 
out that other experiments should be carried out in 
order to certify ESPI-SA as a “black-box” 
procedure for in-plane mechanical 
characterization of orthotropic materials. 
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Table 1. Sensitivity of ESPI-SA performance to experimental data 
 

Location 
where data are 

compared 

 
x = 5 mm 

 
X = 10 mm 

 
x = 16.5 mm 

 
All locations 

Ex = 5000 Ex = 10000 Ex = 30000 Ex = 3000 
Ey = 3000 Ey = 8000 Ey = 10000 Ey = 2000 
Gxy = 2000 Gxy = 2000 Gxy = 8000 Gxy = 1000 

 

Initial values 
of  elastic 
constants* νxy = 0.1 νxy = 0.4 νxy = 0.01 νxy = 0.01 

Initial % error 
on ux  
Average 
Maximum 

 
    
   140.1 %  
   197.4 % 

   
    
   146.6 %  
   226.2 %   

 
       
     37.6 %  
    148.4 % 

 
       
      281 %  
      870 %   

 
Ex = 25016 Ex = 25048 Ex = 25031 Ex = 25043 
Ey = 22049 Ey = 21989 Ey = 21963 Ey = 22034 
Gxy = 5002 Gxy = 5035 Gxy = 4969 Gxy = 5000 

Calculated 
values of 

elastic 
constants νxy = 0.281 νxy = 0.279 νxy = 0.279 νxy = 0.279 

Final % error 
on ux  
Average 
Maximum 

 
    
  1.351 %  
   2.711 % 

 
   
   1.469 % 
   2.481 % 

 
     
    1.118 % 
    2.180 % 

 
    
   2.033 % 
   2.775 % 

 Target values: Ex = 25 GPa ; Ey = 22 GPa; Gxy = 5 GPa; νxy = 0.28 

DETERMINE DISPLACEMENTS
NUMERICALLY WITH FEM 

ASSIGN VALUES OF ELASTIC 
CONSTANTS Ex, Ey, Gxy, νxy

BUILD FEM MODEL PRESERVING 
CORRESPONDENCE BETWEEN  

NODES AND PIXELS 

STORE DISPLACEMENTS FOR EACH PIXEL

MEASURE EXPERIMENTALLY  
DISPLACEMENTS BY MEANS OF PS-ESPI 

COMPUTE THE DIFFERENCE Ψ  
BETWEEN NUMERICAL AND 

EXPERIMENTAL DATA 

CHOOSE   (Ex, Ey, Gxy, νxy)   AS DESIGN VECTOR & 
MINIMIZE Ψ WITH SIMULATED ANNEALING 

CONVERGENCE 
REACHED? 

END ESPI-SA 

   NO

Figure 1. Flow-chart of ESPI-SA
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Figure 2. Schematic of the experimental set-up 

 
 

 
 

Figure 3. Reinforced fiberglass-epoxy laminate 
characterized with ESPI-SA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

Figure 4. Phase map obtained with PS-ESPI.  
FEM model used in the identification procedure 
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Figure 5. Residual percentage error on ux displacements after the identification process 
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